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1. INTRODUCTION 

The influence of bottom irregularities on horizontal flow of a stratified fluid can manifest itself through essentially 

nonlinear effects due to the propagation of long upstream waves and a rearrangement of the flow, under certain conditions 

including partial or complete blocking of the entire region of flow by an obstacle [1, 2]. Despite the complicated wave pattern 

in the vicinity of the obstacle, in a number of cases the salient features of the flow can be described by the equations of" 

multilayer shallow water. For two-layer and multilayer shallow water, respectively, Baines [3, 4] gave a detailed theoretical 

description of possible flow regimes, a comparison of his experiments on the motion of an obstacle in a two-layer liquid a 

rest, and a classification of waves propagating upstream and flows over an obstacle as a function of the mainstream 

parameters and the barrier height. This problem was studied numerically in [5]. In comparison with the analogous problem 

of the motion of an obstacle in a one-layer liquid [1, 6] not only does the wave pattern become more complicated but also 

basically new flow regimes appear. In steady flow regimes found experimentally in [1, 3] critical and supercritical flows in 

front of the obstacle become a supercritical flow behind it, remaining supercritical everywhere above the barrier. Above the 

obstacle and immediately beyond it there may be hydraulic jumps and whir!s, converting supercritical flow into supercritical 

flo~, once again. Externally this situation contradicts the concept of control section, generally accepted in hydraulics, within 

which during steady flow various states in front of and beyond the obstacle can be realized only if the flow is subcritical in 

front of the barrier, critical above the crest, and supercritical behind it. 

Our aim here, within the shallow water theory, is to make a theoretical study of possible flow regimes of a two-layer 

liquid in the vicinity of an obstacle moving with constant velocity and, in particular, to substantiate the possibility of a forced 

regime of flow past the barrier, during which supercritical flow occurs over the crest. Another feature is that the 

classification of flows, taking into account the initial shift of velocity in the layers, is more complete than in the studies 

mentioned above. In particular, for flows with a nonzero initial shift of velocity a supercritical flow regime was found: the 

regime contains a pair consisting of a hydraulic jump and a well and is characterized by an abrupt change in the amplitudes 

of the waves for small changes in the flow parameters. The last circumstance is a source of hysteresis that is observed in 

numerical calculations when the flow reaches one steady-state regime or another, depending on how the immersed body is 

accelerated in the flow. The cause of the hysteresis is different from the analogous phenomenon noted in [3]. There, the 

overlap of the regions in which various kinds of streaming (supercritical and with hydraulic jump gone) occur is attributed to 

the application of different laws of conservation for the flow of the liquid over an even bottom and over a barrier. In this 

study, in much the same way as in [7], a single system is used to describe two-layer potential flow over an uneven bottom 

and the choice of  laws of  conservation, which is in itself problematical for this class of flows, is validated in Section 2. 

Hysteresis when the flow reaches the vicinity of the body in various steady-state regimes at the same towing speeds is due 

primarily to the nonmonotonic dependence of the parameters of the mainstream over an obstacle on the height of the obstacle 

and manifests itself during forced streaming regimes. 

2. Equations of Two-Layer Shallow Water. In the long-wave approximation the equations of two-layer shallow 

water are derived from the assumptions of hydrostatic pressure and a uniform depth distribution of the density and horizontal 

component of the velocity from the equations of motion of an ideal inhomogeneous liquid [8]. 

In the Boussinesq approximation for ( p -  - P+)/P0 < <  1 the equations of a plane-parallel two-layer flow of liquid 

under a horizontal cover have the form 
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Here h + and h -  are the thicknesses and u + and u - ,  the horizontal velocities, of the upper and lower layers; p+ = p is the 

pressure on the upper cover; H is the total channel depth; the equation z = z(t, x) specifies the position of the channel 

bottom (Fig. 1); b = (p -  - P+)g/P0 reflects the effect of buoyancy on the dynamics of the layers of the liquid. 

The system (2.1) is essentially nonlinear. Even from the initially smooth distribution of the layer thicknesses and 

velocities, therefore, in time solutions are worked out with large gradients of these quantities and the hypotheses of a 

hydrostatic pressure distribution and a smooth variation of the flow parameters become meaningless. The resulting 

discontinuous solutions describe such phenomena in a real liquid as internal hydraulic jumps and surges. In the two-layer 

model (2.1) the relations necessary to determine the position and amplitude of the jump cannot be obtained at discontinuities, 

even though this system has an infinite number of laws of conservation that uniquely determine the relations at 

discontinuities. The approach most employed by researchers is that proposed in [9]. It consists of obtaining relations at a 

jump on the basis of assumptions of a hydrostatic pressure distribution at the interface between the layers inside the jump. 

One of the disadvantages of this approach is that a generalized (discontinuous) solution of the system (2.1) cannot be found 

without isolating the discontinuity lines since no set of laws of conservation correspond to the conditions at a discontinuity. 

Moreover, under certain conditions the relations obtained lead to a nonphysical energy redistribution in the moving layers. 

Another approach was presented in [10]. The laws of conservation of mass, total momentum, and energy in one layer are 

used as the basic set of  laws of  conservation. The asymmetry in the choice of laws of  conservation is based on the fact that 

under certain conditions (e.g., one layer much thinner than the other) the region of mixing that arises in the jump can extend 

to the bottom and, therefore, the energy losses in the jump apply to such a layer. A review of experimental and theoretical 

studies to analyze the structure of waves in a two-layer flow that arises during streamline flow past an obstacle can be found 

in [6]. 
The principal contradiction in the model of two-layer flow because the laws of conservation of mass, moment, and 

energy cannot be satisfied simultaneously is resolved by going over to a three-layer model [11]. The third layer is an 
interlayer formed as a result of  mixing and intensive wave motion at the interface between homogeneous layers. Analysis of 

the solution of the system consisting of the laws of conservation of mass in each layer, energy in the top and bottom 

homogeneous layers, and total momentum and total energy (including the small-scale component of the kinetic energy in the 

interlayer) gives a real picture of the motion of the layers with allowance for mixing. In particular, this model describes the 

conditions of the transition of  the mixing layer into a submerged flow and the system of equations reduces to the system of 

laws of conservation used in [10]. The complete system of equations for a three-layer flow is difficult to analyze because of 

the large number of nonlinear equations as well as the inhomogeneity of the equations as a result of the inclusion of turbulent 

entrainment of  liquid from the homogeneous layers into the interlayer. For a complete picture, therefore, it is necessary to 

study the simplest limiting cases. 

The equations obtained for two-layer when the interlayer thickness tends to zero constitute one such limit. The system 

of equations in this case consists of the laws of  conservation of mass and energy in homogeneous layers. And although it 

must be considered to be approximate, just as the system mentioned above, it does substantially simplify analysis of the wave 

pattern and, as is shown below, describes the experimentally observed flow regimes in the problem of streamline flow of a 

steady-state two-layer liquid stream past an obstacle. In Section 3 we give the main properties of self-similar solutions of such 

a system, which was studied in [12] on the example of the problem of the decay of an arbitrary discontinuity. 

3. Problem of the Decay of an Arbi t rary  Discontinuity. It is convenient to go over to the dimensionless variables 

h + --, he /H,  z --, z/H, u • ---, ue/.,,/bH, and p --, p/p0bH, i.e., to set H = 1, b = 1, and Po = 1 in (2.1). In a channel with an 

even bottom (z(t, x) -= 0) the flow rate Q = h+u + + h - u -  does not depend on x. without loss of  generality we can obtain 

Q = 0 by going over to the appropriate coordinate system. For the variables h = h -  and 3' = u -  - u + the system (2.1) 

takes on the form (0 _< h _< 1) 

(' / h +(h(1-h)y) ,=0 ,  Y,+ ~(l-2h)~, 2+h =0.  (3.1) 
% 
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Fig. 1 

System (3.1) is written in divergent form, which makes it possible to determine motion with discontinuities. The 

pertinent laws of conservation are the laws of conservation of mass of each layer and of the potentiality of flow upon 

transition from the region with abrupt changes of quantities in the flow. As mentioned above, conservation of the total 

momentum is ensured by a rearrangement of the flow in the neighborhood of the interlayer, whose thickness is assumed to be 

small and is not taken into account in the given model. The structure of the discontinuous solutions for (3.1) can be 

considered on the example of the Cauchy problem with stepped initial data (the problem of the decay of an arbitrary 

discontinuity) 

(h l,y~), x < 0, (3.2) 
(h(0, x), ~,(0, x)) -- [(h~, :'2), x > 0. 

The solvability of the problem (3.1), (3.2) was studied in [12], where in particular it was proved that for the initial data from 

the region of hyperbolicity ~ = {(h. 7): 0 < h < 1, 13'1 < 1} of the system (3.1) there exists a single solution of the 

problem (3.1), (3.2) with the values (h, 3") in f~ that contains a finite number of aligned simple waves and discontinuity lines. 

An aligned simple wave is taken to mean a continuous solution that depends on a combination of variables ~" = x/t. 

Additional stability conditions, ensuring the uniqueness and continuous dependence of the solutions on the initial data, are 

satisfied on discontinuity lines of the first kind. Since in much the same way as equations of one-layer shallow water and the 

equations of gas dynamics the problem of the decay of an arbitrary discontinuity can give an idea of the salient features of the 

solutions of the Cauchy problem with arbitrary initial data, it makes sense to consider it in greater detail. 

The equations of  the characteristics of the system (3.1) 

dx/dt = 2 • = (1 - 2h)y _-2 ~/h(1 - h)( l  - y2) 

show that this system is hyperbolic type for (h, 3') E i2. In Riemann invariants 

S = (1 - 2h) - 2 Vh(l - h)(t  - r2), 

R = (1 - 2h) + 2",/h(l - h)(1 - :,2) 

Eqs. (3.1) take on the form 

S + ) . - S = 0 ,  R + 2 * R  = 0. (3.3) 

In the plane (h, 7) of the hodography by virtue of (3.3) the characteristics are mapped by ellipses A r, which are specified by 

0'  + r ( 2 h -  1)) 2 + (1 - r ~ ) ( 2 h -  1) 2 =  1 - r 2 ( r  2 < 1) 

and inscribed in the hyperbolicity rectangle ~ (Fig. 2), the parts with positive slope corresponding to the S wave (S -- const) 

and with a negative slope, to the R wave (R --= const). From the laws of conservation (3.1) it follows that the relations 

D[hl = [h(1 - h)yl,  D IYl ffi (1 - 2h)y 2 + (3.4) 

357 



- f  o I 
L 

7" 

Fig. 2 

a b 

3 I /H 

0 2r 0 

Fig. 3 

are satisfied on discontinuity lines with the equation D s = dx/dt. Here [f] = fit, x(t) - 0) - fit, x(t) + 0). The discontinuity 

propagates to the left (first kind), if [h][3"] < 0 and to the right (second kind) if [h][3"] > 0. Equations (3.4) can be written 

as 

y - Zo h - h o 
- - [ ! ! ( 3 . 5 )  41 YYo V 2 h + 2ho - hh o 

The relations 3' = 3"+(h; h o, 3"0) and D s = a(h, 3"; h 0, 3'0) are found in explicit form from (3.4) and (3.5). If (h o, 3'0) is the 
state in front of  the wave, then the function 3' = 3'-(h; h 0, 3'0) decreases with increasing h for discontinuities of the first kind 

while 3' = 3"• h o, 3"0)" increases with h for discontinuities of the second kind. The jump with values (h +, 3, +) and (h- ,  

3 '-)  to the right and left of the discontinuity is stable upon satisfaction of the inequalities 

D = tr(h § 7+; h-, 7-)  <~ a(h, y-(h; h- ,  y-)) ,  (3.6) 

D = a(h § y+; h-, y-)  >~ o(h, 7+(h; h § y§ 

for discontinuities of the first and second kind, respectively, for (h + - h)(h- - h) < 0. In contrast to studies (e.g., [3]) 

where the stability of the discontinuities was attributed to a decrease in the total energy in the jump, condition (3.6) does not 

require use of an additional law of conservation and expresses the monotonic growth of the velocity of  the discontinuity as a 

function of its amplitude. 

The self-similar solution of the problem (3.1), (3.2) can be found much like the gas dynamics equations [13] from the 

intersection of  the wave adiabatic curves in ft. An adiabatic curves of the first or second kind is taken to be a smooth curve 

on the (h, 3') plane with the equation 3, = w• h o, 3'0) passing through the point (h o, 3'o) and consisting of segments of 

simple R or S waves and stable shock transitions of the respective kinds. In [t2] we showed that a single monotonically 

decreasing adiabatic curve of  the first kind and a single monotonically increasing adiabatic curve of  the second kind pass 

through each point (h 0, 3"0). The wave adiabatic curve consists of a shock transition segment, starting at (h o, 3"0), and two 

segments of simple waves adjoining it on either side. The joining occurs at points (h, 3'), where the condition da/dh = 0 is 

satisfied. At those points the velocity of the characteristics of the corresponding family k _+ (h, 3') agrees with the velocity 

5(h, 3'0; h, 3") of the discontinuity and a simple wave adjoins the discontinuity smoothly (see Fig. 2). If  the initial states (h i, 

3"i) (i = I, 2) in (3.2) belong to the same ellipse Ar(r 2 < 1), then a wave adiabatic curve of  the first kind passing through 

(hl, 3'1) and a wave adiabatic curve of the second kind passing through (h 2, 3'2), as shown in [12], have a single point of 

intersection in A r. The corresponding self-similar solution of the problem (3.1), (3.2), therefore, consists of two waves turned 

to theleft and the right and centered at (0, 0) (Fig. 3a). Each of these waves is either a combination consisting of a stable dis- 
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continuity, propagating by the unperturbed state 1 or 2, and a following centered simple wave, or only a stable shock 

transition or centered wave. 

l f a  value of r(lr] -< 1) such that (h l, 3'1) E A r for i = I, 2 is not found but (h l, 3"I) E fl, then the solution of the 
problem (3.1), (3.2) does exist but goes beyond the limits of the square fl; by analogy with the gas dynamics equations this 

denotes the appearance of "vacuum" regions in the solution, i.e., the degeneracy of the hyperbolicity. The analogy is 

reinforced by the circumstance that a change of variables reduces Eqs. (3.1) to the equations of a polytropic gas with an 

adiabatic exponent of 2 [8]. 

Because a maxin~um possible velocity O'+max of propagation exists for the long-wave perturbations the salient features 

of the generation and propagation of waves in a two-layer system are qualitatively new compared to those in a one-layer 

liquid. These features are illustrated below with the example of the problem of streamline flow of a two-layer liquid past an 

obstacle. 

4. Two-Layer  Flow over an Obstacle. If the channel bottom is not flat (z(t. x) -= 0), the system (2.1) does not have 

any self-similar solutions. If the external parameters characterizing the problem are fixed and the shape of the bottom and its 

rate of deformation are constant (z = z0(x - Dt), D = const), however, then the solution of (2.1) for long times becomes 

self-similar. A nearly steady-state regime is realized above the obstacle in this case. This circumstance can be used to 

formulate the problem of streamline flow of a two-layer liquid past an obstacle in the class of self-similar solutions. 

Suppose that for t = 0 a short obstacle begins to move in a two-layer liquid along the channel bottom with constant 

velocity D. In front of and behind the obstacle the motion produces perturbations, which can be considered to be centered at 

the point (0, 0) in the plane (x, t) if the length of the obstacle is ignored in comparison with the scale of the waves. In this 

formulation we can use the structure of self-similar solutions, which was examined in Section 3, to construct the flow as a 

whole. In comparison with the problem (3.1), (3.2) only the number of possible configurations increases. The motion of the 

obstacle generates waves only when the states of the flow in front of and behind the obstacle are different. A discontinuity 

line x = Dt, corresponding to the trajectory of the motion of the body (Fig. 3b), that is new in comparison with the solution 

of (3.1), (3.2) appears in the (x, t) plane. The relations obtained at this discontinuity from an analysis of possible steady-state 

regimes of flow over an obstacle link the region I(x < Dt) behind the body and the region II (x > Dt) in front of it. The 

terms in front of and behind are arbitrary, as yet, since states 1 and 2 are equally justified. Regions I and II, however, are 

not equally justified. As is shown below, the flow in one of the regions, e.g., in region II, can be determined (independently 

of state 1) from an analysis of  the conditions at the discontinuity x = Dt for some parameter s of  the problem. The solution 

so obtained uniquely determines the state beyond the discontinuity x = Dt and then the solution is found in region I. This is 

possible when for the length x = Dt characteristics of the first kind come from region II and characteristics of the second kind 
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from this line are in region II, i.e., in II we solve a mixed problem in which the state in front of the obstacle is subcritical 

relative to it. In region I the state behind the obstacle is supercritical, i.e., the characteristics of both kinds emerge from the 

line x = Dt into that region and, therefore, a Cauchy problem that is completely analogous to the problem (3.1), (3.2) is 

solved in I. 

The direction of the motion of the body in the two-layer liquid must be determined in order to ascertain in which 

region (I or II) the streamline past the obstacle is subcritical. The region is said to be upstream if the velocity of the liquid in 

the layer in which the body is immersed (in this case, the lower layer) is lower than the velocity of the body. Then the 

motion of the body in the two-layer liquid controls the upstream flow if a subcritical regime is created in front of the obstacle 

and a supercritical regime behind it. The condition that ensures upstream control is the possibility of a steady-state flow of a 

two-layer liquid exiting relative to the obstacle and effecting a subcritical-supercritical conversion. To find the additional 

relations that ensure such a transition, we consider steady-state streamline flow past an obstacle in a coordinate system that 

moves along with the body. 

5. Steady-State Flow over an Obstacle. Let us assume for definiteness that the body moves to the right, i.e., u -  c < 

D, where the subscript c indicates the state of the flow over the crest of the obstacle (z'(x, c) = 0, Fig. 1). Equation (2.1) 

gives the following integrals for steady-state streamline flow: 

h ( u -  - D) = h~(u;  - D) = Q.-, 

(1  - h - z ) ( u "  - o )  = ( I  - h~)Cu;  - o )  = Q ' ,  

l I ( 5 . 1 )  

-i ( u -  - o )  ~ + h + ~ + p"  = -i ( u ;  - D) ~ + h~ + p ;  = : - ,  

1 P~" 1 . § = y §  
-i (u§ - ~  + = -i  ("~ - ~  + P~ 

A continuous solution of (5.1), relating the subcritical and supercritical states 3 and 4, is possible only when the 

condition for critical flow over the top of the obstacle is satisfied: 

( u ;  - D )  ~ ( - ~  - n )  ~ 

~ -  h c + 1 - h - z  1 = 0 .  (5.2) 

In this case A 3 < 0 in front of the obstacle and A 4 > 0 behind it. For a given value 6 = Zma x the conditions (5.1) 

and (5.2) give an additional relation between h 3 and ~'3, which is necessary for a unique construction of  the solution of the 

mixed problem in the region in front of the obstacle. The supercriticality of state 4 behind the obstacle means that X+4 < D 

and small perturbations from region I do not reach the obstacle. In region I, however, the corresponding self-similar solution 

may contain discontinuities that propagate with a velocity greater than D and the flow becomes inconsistent. In this case the 

obstacle is immersed' and cannot control the upstream flow, whereby a different (completely subcritical) streamline flow 

regime occurs and the solution of the problem (3.1), (3.2) accords with the self-similar solution of  the same problem above 

an even bottom, considered in Section 4. Since the conditions for obstacle immersion can be determined only after 

constructing the solution in region II in front of the obstacle, subsequent analysis will be devoted to a study of the set of 

allowable values of the problem parameters, for which the give obstacle controls the upstream flow. 
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The (D, ~) Plane. The obstacle is characterized by the dimensionless parameters D and 5 = Zma x. It is convenient, 

therefore, to represent the possible configurations of waves, arising in region II, in the parameter plane (D, 6). The pattern 

thus obtained depends on the initial state (h 2, 3'2). The wave configuration in front of the obstacle has been studied in detail 

in [3] for 3'2 = 0 (both layers are at rest in the unperturbed state). The diagram of flow regimes obtained in [3], however, is 

substantially more complicated than that given below (compare Fig. 8 of [3] with Fig. 5). This is because different laws of 

conservation are used for the flow of a two-layer liquid over an obstacle and over an even bottom. Approximate laws of 

conservation of horizontal momentum in each layer are used as the relations at discontinuities above an even bottom while the 

total pressure in each layer is conserved in steady motions over an obstacle. The region of parameters on the (D, 8) plane 

(the (Flo, H) plane in [3]) for which the streamline flow over the obstacle is completely supercritical and the region in which 

obstacle controls the upstream flow, therefore, intersect and hysteresis becomes possible, i.e., the pattern of streamline flow 

for the values of (D, 5) from the region of intersection can depend on how the body is accelerated as it enters the steady-state 

mode. For Eqs. (3.1) the boundaries of  the above-mentioned regions agree and hysteresis due to inconsistency of the 

complete laws of conservation of the momentum and energy does not appear. The dependence on the history of the motion of 

the body for a fixed streamline flow regime, which is considered below, does persist, however. 

To construct (in the (D, 8) plane) a region in which for given initial values of (h 2, 3'2) the obstacle controls the 

upstream flow it is sufficient to consider a wave of any amplitude, propagating to the right, and to find for it all the values of 
the parameters (D, 8) for which the obstacle sustains it. We obtain the desired region by varying all of the allowable values 

for the amplitude of waves propagating to the right. Suppose that 3' = 3'+(h; h 2, 3"2) is the equation of a wave adiabatic curve 

of the second kind. If the value of h 3 from the region of definition of that adiabatic curve is given, then the state (h 3, 3'3), 3'3 

= 7+(ha: h2, 3"2) behind the front of that wave is given (Fig. 3b). 
The state (h 3, 3'3) is subcritical relative to an obstacle moving with velocity D, upon satisfaction of the inequality 

; t - ( h  3, y3) < D < , t ' (h~ ,  Y3)- 

The dependence z = z(h) stemming from Eqs. (5.1) above the obstacle is illustrated in Fig. 4a. Since the value of h 3 

corresponds to the subcritical state, we can prove that at that point dz/dh < 0 and, therefore, the equation z(h) = 0 has two 

more roots h 4, h 5 such that h 4 < h 3 < h 5, (dz/dh) l h = h4 > 0, and, therefore, state 4 is supercritical. The continuous 

solution of Eqs. (5.1) can join only states 3 and 4, provided that the parameter 8 is chosen so that 8 = max z(h) (Fig. 4a). 
h E [h4=h~l  

To substantiate this statement, it is sufficient to note that by virtue of (5.1) the dependence z = z(h) is given oy the equation 

I (O-)l I (Q§ 
P ( h , z )  - 2 h 2 2 ( I  - h -  z)  2 + h + z - J + 3 ' .  = 0 

and the derivative dz/dh is found from 

l (1 - - -  z )  i d h  - -  h ' ' ' S ' -  + ( l  - h - z)  3 

Since tx I h = h3 < 0, for a root h 4 such that h 4 < h 4 the signs of z~ and dz/dh for h = h 4 agree and state 4 is supercritical. 

When only a stable discontinuity (h+(h3, 3'3) > a(h3, 3'3; h2, 72) propagates to the right an additional constraint 

consists in the condition D < a(h 3, 3'3; h2, 3"2), which ensures that the configuration depicted in Fig. 3b can exist. 
The region ARQ'PE of parameters in the (D, 8) plane, for which the flow to the right of the obstacle is controlled by 

the obstacle, is shown in Fig. 5a for the initial state h 3 = 0.26, 3'3 = -0 .8 .  The configuration agrees qualitatively with the 
corresponding diagram in [3, Fig. 8]. The curve PQ corresponds to those values of (D, 6) for which the lower layer (D = u~ 

8 = h3), is completely blocked and above this curve the top of the barrier is in the upper layer. A wave propagating up along 

the stream thus no longer depends on the height of the obstacle. The equation of the curve PQ is given in terms of the wave 

adiabatic curve 3" = 3'+(h; h 2, 3"2) as follows (in a coordinate system such that the total discharge h u -  + (1 - h)u + = 0): 

O ffi u ;  ffi (1 - ,~)~,'(~; h 2, :,,). 

The region ABCE corresponds to the values of the parameters of a stable discontinuity (internal surge), moving with velocity 

a > D. A dashed line represents a set of pairs (D, 8), corresponding to the f'Lxed state (h 3, "/3) behind the discontinuity. 

From the stability conditions (3.6) for D < Dma x the inequality a < h+(h3, "/3) is satisfied, so that on the limiting curve AE 

the velocity of the obstacle agrees with discontinuity velocity a = D. The dependence z = z(h) is the same above the obstacle 
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as inside the region (Fig. 4a). For points of the (D, tS) plane above the line EC, which corresponds to the values of (h3, 3'3) 

for a surge with maximum amplitude and velocity a = Dma x, the wave propagating to the right consists of the surge of 

maximum amplitude and a simple wave adjacent to it. Therefore, D < X+(h3 , 3'3) is a constraint. Equality is reached at the 

line PE. In this case the flow is critical in front of the obstacle, the dependence z = z(h) above the obstacle is shown in Fig. 

4b. The region ABQ corresponds to waves with h 3 < h 2. This region is missing in [3] since there the problem solved is 

analogous to the problem (3.1), (3.2), but with the special initial data h 1 = h 2, 3'1 = 3"2 = 0, and the solution of the system 

(3.1) in region I does not admit the existence of flow with a detached rarefaction wave. The obstacle is immersed and an 

entirely subcritical flow regime is realized in the region ABS. 

The same main flow regimes, during which the obstacle controls the upstream flow, as noted in [3], i.e., regimes 3C 

and 4C, are thus possible in the region AQPE. Thus, regime 3C with a stable discontinuity corresponds to the region ABCE 

and regime 4C, in which the discontinuity is followed by a centered S wave, corresponds to the region CPE. 

When the initial depth h 2 of the lower layer increases the region ABCE extends in front of the obstacle because the 

maximum amplitude of the stable shock waves decreases. This region is absent for h 2 = 0.5, 3'0 = 0 (Fig. 5b). As h 2 

increases further stable discontinuities are possible only for h 3 < h 2 (sinking waves) and the region ABCE occupies the 

position indicated in Fig. 5c for h o = 0.8, 3'0 = 0. 

For sufficiently low values of h 3 the flow subcriticality condition X-(h3, 3"3) < D < X+(h 3, 3"3) comes into 
contradiction with the condition of complete blocking of the lower layer h 3 = 6, u~ = D on the curve PQ. The line R'3' with 

D = X-(h 3, 3'3), bounding the region of states ARQ'PE, for which the obstacle controls the upstream flow, thus arises (Fig. 

5a). 
The initial shift of velocity 3'2 ;~ 0 does not fundamentally change the location of the respective regions in the (D, tS) 

plane, although some features of flow in the vicinity of the obstacle do become more pronounced. The nonmonotonic 

dependence z = z(h) above the obstacle for D > Dma x leads to an abrupt rearrangement of the streamline flow pattern for 

small changes in the flow parameters and to hysteresis. These topics are discussed below in the examination of critical and 

supercritical regimes of streamline flow (regimes E and F [3]). 

6. Critical Regime of Streamline Flow. As mentioned above, for the values of (D, tS) outside the region AEPQ 

(Fig. 5a) of self-similar solutions such that the obstacle controls the upstream flow a critical regime does not exist and, 

generally speaking, supercritical streamline flow should occur. Experiments ([3], regimes 4E, 5E) show, however, that in the 

region PEF critical flow in front of the obstacle is converted into supercritical flow behind it. The flow is supercritical above 

the obstacle and a hydraulic jump occurs behind it, reducing the depth of the lower layer. To explain why such a 

configuration arises, we consider the motion of an obstacle with velocity D M < Dma x (Fig. 5a). For a given height t5 the 

corresponding state in the (D, tS) plane is mapped by a point on the straight line MN. If this point lies below the curve AE, 

the streamline flow regime is supercritical. In the region ABPE the detached wave is controlled by the obstacle (regimes 3C 

and 4C [3]). At the point G of  intersection of the curve PE with the straight line MN the maximum possible wave amplitude 

is reached and the flow in front of the obstacle becomes critical, i.e., D = k+(h3, 3"3)- In the (h, z) plane the curve z = z(h) 

touches the horizontal axis at the point h 3 (Fig. 4b) and t5 is equal to the value of the local maximum z 0 of that curve. A 

further increase in the height 5 does not cause the state (h 3, 3"3) to change. The parameters of the flow above the front slope 

of the obstacle corresponds to the motion of the point (h, z) along the supercritical curve 3 to the level z = ~5. 

In principle, on the reverse slope the solution can return to the initial point along the same curve, i.e., a completely 

supercritical regime of supercritical flow. Because of the local maximum on the curve z = z(h), however, a transition from 

the supercritical branch 3 to the supercritical branch 1 in a hydraulic jump is possible in the stationary solution. The only 

jump that satisfies the stability conditions (3.6) is a transition from branch 3 to the critical state corresponding to the 

maximum on the curve z = z(h). 
Experiments and computations of unsteady state show that precisely this regime of streamline flow is realized. 

Strictly speaking, it cannot be assumed to be steady since A(z0) = 0 and by virtue of (5.1) derivative solutions are not limited 

in the neighborhood of  the critical point x = x c above the reverse slope (z'(x c) > 0. This can cause the position of the jump 

to oscillate relative to the obstacle; the amplitude of the oscillations should decrease for more extended obstacles and the jump 

can be considered to be quasisteady. Within the framework of the steady-state flow pattern, of course, preference cannot be 

given to one of the solutions mentioned above and an adequate choice can be made with allowance for the initial unsteady 

stage when flow enters the self-similar regime. Associated with this circumstance is the phenomenon of  hysteresis, which can 

be realized during the motion of an obstacle of height t5 = z o, depending on whether or not because of the initial conditions 

there is a subcritical regime ofstreamline flow past the obstacle along branch 2 or a supercritical regime alongbranch 3. Simi- 
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lar matters stemming from the nonunique nature of the streamline flow regimes are discussed in greater detail in the 

following sections for the motion of a body with velocity D > Dma x- 

7. Supereritical Streamline Flow. The velocity of propagation of perturbations has a maximum Dma x in the two- 

layer system under consideration. The flow in front of the obstacle, therefore, is unperturbed and since Dma x > ~.+(h2, 3'2) 

only a supercritical streamline flow regime for which the states in front of and behind the obstacle coincide can be 

supercritical relative to the moving body. Above the body, however, the flow pattern can be very interesting and this case 

deserves more attention. At velocities D slightly greater than Dma x the hydraulic jump of maximum amplitude "drives into" 

the body and stop at a certain height on the front slope. The corresponding dependence z = z(h) is shown in Fig. 4c. 

Branches 1 and 3 are supercritical and 2 is subcritical. For an obstacle of height 5 < z o the flow is symmetric about the body 

and is supercritical. For an obstacle of height t5 > z o a continuous solution does not exist since branch 2 corresponds to 

subcritical flow and continuous transition from branch 1 to branch 3 is not possible on either the front or reverse slopes of 

the obstacle. In much the same way as for the case considered in Section 6 there is a discontinuous solution that contains a 

pair of jumps, changing the flow from supercritical to critical. The pattern of the streamline flow in the (h, z) plane is shown 

in Fig. 4c. The arrows to the curves correspond to flow on the front slope and those to the left, to flow on the reverse slope 

of the obstacle. On the front slope the supercritical flow rises to a height z 1, then comes a hydraulic jump taking the flow in 

the critical state to branch 3, followed by supercritical flow along branch 3 to the value z = tS. On the reverse slope at a level 

z o a jump takes the flow to branch 1, along which it returns to the initial state 2. Also applicable to the solution constructed 

are the comments from Section 6 about the unlimited nature of the derivatives at the levels z = z 0 and z = z 1 and the 

quasisteady nature of the jumps. From the standpoint of control of the flow during the motion of the body such a flow regime 

should be classified as supercritical since the states of the flow in front of and behind the obstacle coincide. In much the same 

way as for the critical streamline flow regime considered above, when the height of the obstacle is increased the flow regimes 

change abruptly in the passage through the value Zma x = z o and when the height decreases, in the passage through the value 

Z m a  x = Z 1. The hysteresis obtained is more pronounced than for the case of critical streamline flow and can result in a 

nonunique streamline flow pattern as well as abrupt unsteady changes in the flow during smooth variation of the problem 

parameters. As the velocity D of the obstacle increases further the dependence z = z(h) becomes monotonic and the flow, 

symmetric. The possibility of reaching various asymptotic forms of the solution for long times can be studied on the basis of 

a numerical simulation of the nonstationary problem. Section 8 gives the results of numerical computations concerning mainly 

the nonuniqueness of the regime of steady-state streamline flow past an obstacle. 

8. Unsteady Flo~v of  a Two-Layer Liquid. A number of assumptions were made in the analysis of self-similar 

solutions of the problem of a streamline flow of a two-layer liquid past a body moving with velocity D. The main 

assumptions are that: the flow enters the self-similar regimes fairly rapidly, the flow over the obstacle is steady, the condition 

arises for the flow to advance to the body in the layer in which the body moves (u- < D), and the body controls the 

upstream flow in the normal and forced streamline flow regimes. The feasibility of each assumption can be ascertained from 

the asymptotic form of the solutions of the nonstationary problem. Direct analysis is hindered because the equations are 

nonlinear, but numerical computation makes it possible to verify or refute the various hypotheses. 

On the basis of a conservative difference scheme for Eqs. (2.1) with the laws of conservation (3.1) we solved the 

problem of motion of an obstacle in a two-layer liquid along the horizontal bottom. For various methods of accelerating the 

body in the initial segment to reach a steady towing regime we used all the main flow regimes found experimentally and 

theoretically from an analysis of self-similar solutions, in particular the arrival at the critical and supercritical regimes of 

streamline flow in the appropriate region of problem parameters. We used the scheme of straight-through computations 

without isolating the discontinuities, analogous to the scheme of Godunov, cited in [13]. The stability condition (3.6), 

therefore, cannot be used to construct a numerical algorithm, but the principle that discontinuities are stable against expansion 

into a series of waves of smaller amplitude is equivalent to (3.6) and is intrinsic to such difference schemes led to a natural 

selection of only stable discontinuities in the numerical solution. 

Of particular interest is the numerical computation of forced flow regimes corresponding to critical and supercritical 

streamline flow past an obstacle, since the flow over an obstacle has a very fine structure and, strictly speaking, is not steady. 

The computations show that in this case as well the wave pattern of the flow rapidly reaches asymptotic form that is stable 

against perturbations of  the oncoming stream. Figure 6a shows the pattern of streamline flow past an obstacle for values of 

the parameters (D, ~5) from the region PEF, corresponding to the critical regime E4 from [3]. The continuous sinking wave 

is on the reverse slope of  the obstacle and the state of the flow is critical in front of the obstacle and supercritical above the 

obstacle; this corresponds to a stationary solution, which is considered above and takes state 3 into 4 (Fig. 4b). The calcula- 
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tion of a supercritical streamline flow past an obstacle, containing a jump-whir l  pair, is shown in Fig. 6b. The flow regime 

is most distinct for the values h o - 0.26, A o - - 0 .8 ,  D = 0.36, c5 = 0.2, i.e., experimentally it is more easily detected 

when the obstacle is towed in a two-layer system with an initial shift of velocity in the layers. The last solution is a beautiful 

test for checking the numerical algorithm, since it represents supercritical asymmetric flow with a large gradient, for which 

the boundary conditions ca be easily formulated. 

As mentioned above, the stationary solution is not determined uniquely for values of the obstacle height ~5 that lie in 

the interval (z 1, Zo). For ~5 = z o the solution on the leading edge of the wave can correspond to the subcritical branch 2 or 

the supercritical branches 1, 3 of the curve z = z(h) (Fig. 4b, c). Figure 7 shows the pattern of streamline flow t~ast an 

triangular obstacle moving with velocity D = 0.35 in a flow with an initial velocity shift 3'0 = - 0 . 8  and lower-layer depth 

h o = 0.26, for the case ~ = z o = 0.15. Rectilinear generatrices of  the body are more convenient for determining the location 

of the jumps above the obstacle. The values of the determining parameters are chosen so that the towing regime corresponds 

to point E in the (D, tS) plane (Fig. 5a). Since for this point D = Dma x and t5 = z 0, three different asymptotic limits in the 

problem of unsteady acceleration of a body and its reaching a steady towing regime can be found from the solution of the 

self-similar problem. All three flow regimes can be simulated in numerical computation. Supercritical symmetric flow 

(dashed line in Fig. 7), corresponding to curve 1 in Fig. 4b, is established when the barrier is accelerated rapidly 

(dimensionless time t - 5) to a velocity D = Dma x. In the case of smooth acceleration (t - 300) a detached hydraulic jump 

manages to form in front of  the body and when the body reaches the velocity D = Dma x the jump "sits" on the obstacle 

(dash-and-dot line in Fig. 7); on the front slope the subcritical flow corresponds to curve 2 and supercritical flow on the 

reverse slope, to curve 1 (Fig. 4b). 
Numerical simulation of asymmetric supercritical flow above a barrier containing a jump-whi r l  pair is somewhat 

more complicated. For this purpose at first an obstacle of height ~5 - 0.4 accelerates smoothly (t - 100) so that a regime of 

forces streamline flow, corresponding to the region PEF in Fig. 5 (regime 4E [3]). The height of the obstacle then smoothly 

decreases (t - 100) to t5 = 0.15. The stable streamline flow regime obtained is indicated by the solid line in Fig. 7. 

At least theoretically, therefore, three different asymptotic limits for long times have been constructed for the general 

set of  motion parameters (h 2, "Y2; D, ~5) in the problem of supercritical streamline flow of a two-layer liquid past a body. An 

interesting aspect here is the possible change in the type of flow when the determining parameters of  the motion change only 

slightly, with the change in flow leading to a considerable rearrangement of the flow as a whole. In particular, in the 

transition from a forced to a supercritical regime of streamline flow the energy accumulated above the body can be studied 

downstream along the fl6w in the form of waves of large amplitude. 
9. Remarks.  One of  the main problems in the study of two-layer flows in the Boussinesq approximation is that of 

choosing the laws of conservation to reflect the evolution of the internal hydraulic jumps. The difficulty in simulating such 

flows is that the condition of  potential flow in each layer in the transition to the long-wave approximation contradicts the law 

of conservation of  momentum. This contradiction can be eliminated within the complete model that takes into account the 

possibility of part of the energy of long waves being pumped into short-wave perturbations at the interface, with an attendant 

growth of  the interlayer between layers [11]. When the interlayer thickness is relatively small, however, the indicated system 

reduces to the equations of  two-layer shallow water (2.1) with the laws of conservation (3.1), based on the equations of the 

continuity and potentiality of the flow in each layer. And although this system is approximate, as shown above it gives 

quantitative as well as qualitative agreement with the results of experiments on the structure of the waves in the problem of 

unsteady streamline flow of  a two-layer liquid past a body. 
For long times the solution of this problem tends to the self-similar solution of  the problem of the decay of an 

arbitrary discontinuity with auxiliary boundary conditions on the line x = Dt in the (x, t) plane, corresponding to the 

trajectory of the motion of  an obstacle towed with velocity D. 
The conditions above the obstacle that relate the states of  rest of the flow in front of and behind the body make it 

possible to determine the flow everywhere by solving the mixed problem in the region in front of the obstacle and the Cauchy 

problem in the region behind it. These conditions are determined by the possible existence of a flow that is steady relative to 

the obstacle, effecting a subcritical-supercritical transition. In contrast to one-layer shallow water, however, they do not 

necessarily conform to the generally accepted "control cross section" conditions, under which there is a continuous steady 

flow over the obstacle, subcritical on the front slope of the barrier and supercritical on its reverse slope. Forced streamline 

flow regimes, for which the flow is supercritical above the crest of  the obstacle arise because of  the characteristic features of 

the propagation of  long-wave perturbations in the two-layer liquid. The fact that the nonlinear waves have a maximum 

velocity Dma x causes the plane of the parameters (D, 6) to have a region (PEF in Fig. 5a) where a change in the height ~ of 
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the towed body cannot have an upstream effect but at the same time the flow above the obstacle is asymmetric, since the 

streamline flow regime, which contains a hydraulic jump (to be more exact, a well) taking the flow from branch 3 to branch 

1 (Fig. 4b), is more stable. This last circumstance causes hysteresis, i.e., the dependence of the pattern of streamline flow 
past the body on the history of its entry into the steady-state regime. Numerical computations of unsteady motion in a two- 

layer liquid, as well as experiments [3] confirm that asymptotic flow in the neighborhood of an obstacle is not unique for the 

determining towing parameters from region PEF (Fig. 5a). When the body moves with a velocity greater than Drnax, an 
asymmetric streamline flow regime, containing a pair of hydraulic jumps (a jump on the front slope and a well on the reverse 

slope, Fig. 6b), is also possible. The most interesting here (especially from the standpoint of application in oceanology and 
meteorology) is the possibility of the streamline flow regime "breaking down" to a symmetric regime, which leads to large 

unsteady changes in the flow in the neighborhood of the immersed body for small changes in the parameters of the oncoming 

stream. 
The work was done with the financial support of the Russian Fund for Fundamental Research, Project 93-013-17621. 
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